These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: High Proton Conduction in Two Highly Water-Stable Lanthanide Coordination Polymers from a Triazole Multicarboxylate Ligand. Author: Niu X, Yu Y, Mu C, Xie X, Liu Y, Liu Z, Li L, Li G, Li J. Journal: Inorg Chem; 2021 Sep 06; 60(17):13242-13251. PubMed ID: 34436871. Abstract: Two lanthanide coordination polymers (CPs) {[Er(Hmtbd)(H2mtbd)(H2O)3]·2H2O}n (1) and [Yb(Hmtbd)(H2mtbd)(H2O)3]n (2) carrying an N-heterocyclic carboxylate ligand 5-(3-methylformate-1H-1,2,4-triazole-1-methyl)benzen-1,3-dicarboxylate (H3mtbd) were prepared under solvothermal conditions. The single-crystal X-ray diffraction data demonstrate that 1 and 2 are isostructural and display 1D chain structure. Alternating current (AC) impedance measurements illustrate that the highest proton conductivities of 1 and 2 can attain 5.09 × 10-3 and 3.09 × 10-3 S·cm-1 at 100 °C and 98% relative humidity (RH), respectively. The value of 1 exceeds those of most reported lanthanide-based crystalline materials and ranks second among the described Er-CPs under similar conditions, whereas the value for 2 is the highest proton conductivity among the previous Yb-CPs. Coupled with the structural analyses of the two CPs and H2O vapor adsorption, the calculated Ea values help to deduce their proton conductive mechanisms. Notably, the N-heterocyclic units (triazole), carboxyl, and hydrogen-bonding network all play key roles in the proton-transfer process. The prominent proton conductive abilities of both CPs show great promise as efficient proton conductors.[Abstract] [Full Text] [Related] [New Search]