These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol. Author: Wang L, Liu Z, Jiang X, Li A. Journal: Sci Total Environ; 2021 Dec 20; 801():149546. PubMed ID: 34438142. Abstract: The positive correlation between the nitrification activity of activated sludge and 17α-ethinylestradiol (EE2) removal has been widely reported. However, up to now the effect of the granulation of nitrifying activated sludge (NAS) on EE2 removal has not been determined. In this study, nitrifying granular sludge (NGS) exhibited more effective EE2 removal efficiency with 3.705 μgEE2∙(gMLSS∙h)-1 in a sequential batch reactor (SBR). Through the artificial neural network (ANN) model and Spearman correlation analysis, nitrite accumulation was demonstrated to be the key factor affecting EE2 removal. Notably, under the same aeration condition (0.15 L/min), nitrite accumulation was more easily achieved in NGS because of its dense structure. Full-length 16S rRNA gene sequencing suggested that EE2 could strongly influence the microbial communities of NAS and NGS. NGS exhibited an increase in community diversity and richness, but NAS exhibited a decrease. In addition, the relative abundance of Nitrosomonas (ammonia-oxidizing bacteria, AOB) decreased considerably in both NAS and NGS, whereas the expression of amoA and nirK genes in Nitrosomonas was upregulated. It was suggested that Nitrosomonas was forced to regulate its gene expression to resist the negative effects of EE2. Denitrifying bacteria, such as Comamonas, were enriched in both NAS and NGS, and there were more species of heterotrophs that can degrade micropollutants in NGS with exposure to EE2. The transformation pathways of EE2 were uniform in NAS and NGS. Ammonia monooxygenase (AMO) in AOB directly biotransformed EE2 while reactive species produced by AOB chemically transformed EE2. Heterotrophs degraded EE2 and its transformation products (TPs) generated by AOB. According to TPs and microbial structure, NGS exhibited better performance than NAS regarding the collaborative removal of EE2 by AOB and heterotrophs. These results provide important information for the development and application of NGS to treat wastewater containing estrogen and high-strength ammonium.[Abstract] [Full Text] [Related] [New Search]