These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Fine particulate matter constituents associated with emergency room visits for pediatric asthma: a time-stratified case-crossover study in an urban area.
    Author: Ho YN, Cheng FJ, Tsai MT, Tsai CM, Chuang PC, Cheng CY.
    Journal: BMC Public Health; 2021 Aug 26; 21(1):1593. PubMed ID: 34445977.
    Abstract:
    BACKGROUND: Global asthma-related mortality tallies at around 2.5 million annually. Although asthma may be triggered or exacerbated by particulate matter (PM) exposure, studies investigating the relationship of PM and its components with emergency department (ED) visits for pediatric asthma are limited. This study aimed to estimate the impact of short-term exposure to PM constituents on ED visits for pediatric asthma. METHODS: We retrospectively evaluated non-trauma patients aged younger than 17 years who visited the ED with a primary diagnosis of asthma. Further, measurements of PM with aerodynamic diameter of < 10 μm (PM10), PM with aerodynamic diameter of < 10 μm (PM2.5), and four PM2.5 components (i.e., nitrate (NO3-), sulfate (SO42-), organic carbon (OC), and elemental carbon (EC)) were collected between 2007 and 2010 from southern particulate matter supersites. These included one core station and two satellite stations in Kaohsiung City, Taiwan. A time-stratified case-crossover study was conducted to analyze the hazard effect of PM. RESULTS: Overall, 1597 patients were enrolled in our study. In the single-pollutant model, the estimated risk increase for pediatric asthma incidence on lag 3 were 14.7% [95% confidence interval (CI), 3.2-27.4%], 13.5% (95% CI, 3.3-24.6%), 14.8% (95% CI, 2.5-28.6%), and 19.8% (95% CI, 7.6-33.3%) per interquartile range increments in PM2.5, PM10, nitrate, and OC, respectively. In the two-pollutant models, OC remained significant after adjusting for PM2.5, PM10, and nitrate. During subgroup analysis, children were more vulnerable to PM2.5 and OC during cold days (< 26 °C, interaction p = 0.008 and 0.012, respectively). CONCLUSIONS: Both PM2.5 concentrations and its chemical constituents OC and nitrate are associated with ED visits for pediatric asthma. Among PM2.5 constituents, OC was most closely related to ED visits for pediatric asthma, and children are more vulnerable to PM2.5 and OC during cold days.
    [Abstract] [Full Text] [Related] [New Search]