These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Dexmedetomidine Exerts a Negative Chronotropic Action on Sinoatrial Node Cells Through the Activation of Imidazoline Receptors. Author: Ishihara M, Kojima A, Ding WG, Kitagawa H, Matsuura H. Journal: J Cardiovasc Pharmacol; 2021 Dec 01; 78(6):826-838. PubMed ID: 34448469. Abstract: Dexmedetomidine (DEX), an α2-adrenoreceptor (α2-AR) and imidazoline receptor agonist, is most often used for the sedation of patients in the intensive care unit. Its administration is associated with an increased incidence of bradycardia; however, the precise mechanism of DEX-induced bradycardia has yet to be fully elucidated. This study was undertaken to examine whether DEX modifies pacemaker activity and the underlying ionic channel function through α2-AR and imidazoline receptors. The whole-cell patch-clamp techniques were used to record action potentials and related ionic currents of sinoatrial node cells in guinea pigs. DEX (≥10 nM) reduced sinoatrial node automaticity and the diastolic depolarization rate. DEX reduced the amplitude of hyperpolarization-activated cation current (If or Ih) the pacemaker current, even within the physiological pacemaker potential range. DEX slowed the If current activation kinetics and caused a significant shift in the voltage dependence of channel activation to negative potentials. In addition, efaroxan, an α2-AR and imidazoline I1 receptor antagonist, attenuated the inhibitory effects of DEX on sinoatrial node automaticity and If current activity, whereas yohimbine, an α2-AR-selective antagonist, did not. DEX did not affect the current activities of other channels, including rapidly and slowly activating delayed rectifier K+ currents (IKr and IKs), L-type Ca2+ current (ICa,L), Na+/Ca2+ exchange current (INCX), and muscarinic K+ current (IK,ACh). Our results indicate that DEX, at clinically relevant concentrations, induced a negative chronotropic effect on the sinoatrial node function through the downregulation of If current through an imidazoline I1 receptor other than the α2-AR in the clinical setting.[Abstract] [Full Text] [Related] [New Search]