These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: 2'-Fucosyllactose production in engineered Escherichia coli with deletion of waaF and wcaJ and overexpression of FucT2. Author: Lee JW, Kwak S, Liu JJ, Yun EJ, Jin YS. Journal: J Biotechnol; 2021 Nov 10; 340():30-38. PubMed ID: 34450187. Abstract: 2'-Fucosyllactose (2'-FL), a major oligosaccharide of human breast milk, and is currently supplemented into infant formula. For the overproduction of 2'-FL via fucosylation of lactose, conventional approaches have focused on the episomal overexpression of de novo or salvage GDP-L-fucose biosynthetic pathway and α-1,2-fucosyltransferase (FucT2) through T7 RNA polymerase expression system in engineered E. coli. However, these approaches have drawbacks of metabolic burden, plasmid instability, and inclusion body formation. In this study, a deletion mutant of waaF coding for ADP-heptose:LPS heptosyltransferase II was employed for 2'-FL production. As the waaF deletion induces accumulation of colanic acid, additional deletion of wcaJ coding for UDP-glucose-1-phosphate transferase in the waaF deletion mutant resulted in enhanced accumulation of GDP-L-fucose. Besides, 2'-FL yields and titers were drastically improved when T7 promoter was replaced with Trc promoter for α-1,2 fucosyltransferase expressions in the waaF and wcaJ deleted strain. As a result, when FucT2 was expressed under Trc promoter in the E. coli JM109(DE3) ΔwaaFΔwcaJ, 14.7 g/L of 2'-FL was produced with a productivity of 0.31 g/L/h in a fed-batch fermentation. We envision that the deletion-based metabolic design and decreased promoter strength for fucosyltransferase expression can resolve the drawbacks of T7 RNA polymerase-based expression design for 2'-FL production in E. coli.[Abstract] [Full Text] [Related] [New Search]