These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Potential function of oxymatrine as a novel suppressor of epithelial-to-mesenchymal transition in lung tumor cells. Author: Jung YY, Baek SH, Narula AS, Namjoshi OA, Blough BE, Ahn KS. Journal: Life Sci; 2021 Nov 01; 284():119893. PubMed ID: 34454947. Abstract: AIMS: Tumor cells metastasis as well as proliferation are important factors that can substantially determines the prognosis of cancer. In particular, epithelial-mesenchymal transition (EMT) is key phenomena which can cause tumor cell transition into other organs by promoting the disruption of the cell-cell junctions. Because oxymatrine (OMT) have been reported to attenuate the tumor growth, we investigated whether OMT can down-regulate EMT process in tumor cells. We also focused on transforming growth factor-β (TGF-β)-induced EMT process because EMT process can be significantly induced by this growth factor. MAIN METHODS: The cell viability was measured by MTT and real time cell analysis (RTCA) assay. The expression levels of various proteins involved in the regulation of EMT and Akt/mTOR/PI3K signaling pathway were evaluated by Western blot analysis. mRNA levels of several important EMT markers were analyzed by reverse transcription polymerase chain reaction (RT-PCR). The effects of OMT on the cellular invasion and migration were evaluated by RTCA, wound healing assay, and boyden chamber assays. KEY FINDINGS: OMT suppressed the expression of both constitutive and TGF-β-induced mesenchymal markers, such as fibronectin, vimentin, MMP-9, MMP-2, N-cadherin, Twist, and Snail, but induced the levels of epithelial markers. Moreover, OMT down-regulated oncogenic PI3K/Akt/mTOR pathways which lead to a significant attenuation of invasive and migratory potential of lung cancer cells. SIGNIFICANCE: Overall, our study established a novel anti-metastatic role of OMT against human lung cancer cells.[Abstract] [Full Text] [Related] [New Search]