These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Differentiating Benign from Malignant Renal Tumors Using T2- and Diffusion-Weighted Images: A Comparison of Deep Learning and Radiomics Models Versus Assessment from Radiologists.
    Author: Xu Q, Zhu Q, Liu H, Chang L, Duan S, Dou W, Li S, Ye J.
    Journal: J Magn Reson Imaging; 2022 Apr; 55(4):1251-1259. PubMed ID: 34462986.
    Abstract:
    BACKGROUND: Differentiating benign from malignant renal tumors is important for selection of the most effective treatment. PURPOSE: To develop magnetic resonance imaging (MRI)-based deep learning (DL) models for differentiation of benign and malignant renal tumors and to compare their discrimination performance with the performance of radiomics models and assessment by radiologists. STUDY TYPE: Retrospective. POPULATION: A total of 217 patients were randomly assigned to a training cohort (N = 173) or a testing cohort (N = 44). FIELD STRENGTH/SEQUENCE: Diffusion-weighted imaging (DWI) and fast spin-echo sequence T2-weighted imaging (T2WI) at 3.0T. ASSESSMENT: A radiologist manually labeled the region of interest (ROI) on each image. Three DL models using ResNet-18 architecture and three radiomics models using random forest were developed using T2WI alone, DWI alone, and a combination of the two image sets to discriminate between benign and malignant renal tumors. The diagnostic performance of two radiologists was assessed based on professional experience. We also compared the performance of each model and the radiologists. STATISTICAL TESTS: The area under the receiver operating characteristic (ROC) curve (AUC) was used to assess the performance of each model and the radiologists. P < 0.05 indicated statistical significance. RESULTS: The AUC of the DL models based on T2WI, DWI, and the combination was 0.906, 0.846, and 0.925 in the testing cohorts, respectively. The AUC of the combination DL model was significantly better than that of the models based on individual sequences (0.925 > 0.906, 0.925 > 0.846). The AUC of the radiomics models based on T2WI, DWI, and the combination was 0.824, 0.742, and 0.826 in the testing cohorts, respectively. The AUC of two radiologists was 0.724 and 0.667 in the testing cohorts. CONCLUSION: Thus, the MRI-based DL model is useful for differentiating benign from malignant renal tumors in clinic, and the DL model based on T2WI + DWI had the best performance. LEVEL OF EVIDENCE: 3 TECHNICAL EFFICACY STAGE: 2.
    [Abstract] [Full Text] [Related] [New Search]