These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Induction of glutamic acid production by copper in Corynebacterium glutamicum. Author: Ogata S, Hirasawa T. Journal: Appl Microbiol Biotechnol; 2021 Sep; 105(18):6909-6920. PubMed ID: 34463802. Abstract: From the previous transcriptome analysis (Hirasawa et al. Biotechnol J 13:e1700612, 2018), it was found that expression of genes whose expression is regulated by stress-responsive transcriptional regulators was altered during penicillin-induced glutamic acid production in Corynebacterium glutamicum. Therefore, we investigated whether stress treatments, such as copper and iron addition, could induce glutamic acid production in C. glutamicum and found that the addition of copper did induce glutamic acid production in this species. Moreover, we also determined that glutamic acid production levels upon copper addition in a gain-of-function mutant strain of the mechanosensitive channel, NCgl1221, involved in glutamic acid export, were comparable to glutamic acid levels produced upon penicillin addition and biotin limitation in the wild-type strain. Furthermore, disruption of the odhI gene, which encodes a protein responsible for the decreased activity of the 2-oxoglutarate dehydrogenase complex during glutamic acid production, significantly diminished glutamic acid production induced by copper. These results indicate that copper can induce glutamic acid production and this induction requires OdhI like biotin limitation and penicillin addition, but a gain-of-function mutation in the NCgl1221 mechanosensitive channel is necessary for its high-level glutamic acid production. However, a significant increase in odhI transcription was not observed with copper addition in both wild-type and NCgl1221 gain-of-function mutant strains. In addition, disruption of the csoR gene encoding a copper-responsive transcriptional repressor enhanced copper-induced glutamic acid production in the NCgl1221 gain-of-function mutant, indicating that unidentified CsoR-regulated genes may contribute to copper-induced glutamic acid production in C. glutamicum. KEY POINTS: • Copper can induce glutamic acid production by Corynebacterium glutamicum. • Copper-induced glutamic acid production requires OdhI protein. • Copper-induced glutamic acid production requires a gain-of-function mutation in the mechanosensitive channel NCgl1221, which is responsible for the production of glutamic acid.[Abstract] [Full Text] [Related] [New Search]