These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Analyzing Near-Infrared Electrochemiluminescence of Graphene Quantum Dots in Aqueous Media. Author: Yang L, De-Jager CR, Adsetts JR, Chu K, Liu K, Zhang C, Ding Z. Journal: Anal Chem; 2021 Sep 14; 93(36):12409-12416. PubMed ID: 34464100. Abstract: Mechanisms of emissions, especially electrochemiluminescence (ECL), for graphene quantum dots (GQDs) are poorly understood, which makes near-infrared (NIR)-emitting GQDs difficult to create. To explore this poorly understood NIR ECL, two GQDs, nitrogen-doped GQDs (GQD-1) and nitrogen- and sulfur-doped ones (GQD-2), were prepared by a simple one-step solvothermal reaction with similar core structures but different surface states. The GQDs were analyzed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and high-resolution transmission electron microscopy. Photoluminescence results, with a comparable quantum efficiency of 13% to strong luminophores in aqueous media, suggested a mechanism that the emission mainly depends on the core structure while slightly adjusted by the heteroatom doping. ECL of GQD-2 dispersed in aqueous media with K2S2O8 as the coreactant was measured by means of ECL-voltage curves and ECL spectroscopy, demonstrating strong NIR emissions between 680 and 870 nm, with a high ECL efficiency of 13% relative to that of the Ru(bpy)32+/K2S2O8 system. Interestingly, ECL is generated by surface excited states emitting light at a much longer wavelength in the NIR region. The easily prepared GQD-2 has several advantages such as low cost and quite strong NIR-ECL in aqueous media, with which wide applications in biodetection are anticipated.[Abstract] [Full Text] [Related] [New Search]