These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Effects of iron-carbon materials on microbial-catalyzed reductive dechlorination of polychlorinated biphenyls in Taihu Lake sediment microcosms: Enhanced chlorine removal, detoxification and shifts of microbial community. Author: Xu Y, Tang Y, Xu L, Wang Y, Liu Z, Qin Q. Journal: Sci Total Environ; 2021 Oct 20; 792():148454. PubMed ID: 34465049. Abstract: Nano zero-valent iron particles (nZVI, 0.09 wt%), micro zero-valent iron particles (mZVI, 0.09 wt%), granular activated carbon (GAC, 3.03 wt%), GAC supported nZVI (nZVI/GAC, 3.12 wt%) and nZVI&GAC (nZVI 0.09 wt%, GAC 3.03 wt%) were evaluated for their effects on polychlorinated biphenyls (PCBs) anaerobic reductive dechlorination, detoxification, as well as microbial community structure in Taihu Lake (China) sediment microcosms. The results showed that all of these five materials could stimulate PCBs reductive dechlorination, especially for dioxin-like PCB congeners, and nZVI&GAC had the best removal effect on PCBs. The reduction of total PCBs increased from 13.5% to 33.2%. H2 generated by zero-valent iron corrosion was utilized by organohalide-respiring bacteria (OHRB) to enhance the dechlorination of PCBs predominantly via meta chlorine removal in the short term. The addition of ZVI had little impact on the total bacterial abundance and the microbial community structure. The adsorption of GAC and potential bioremediation properties of attached biofilm could promote the long-term removal of PCBs. GAC, nZVI/GAC, nZVI&GAC had different influences on the microbial structure. These findings provide insights into the biostimulation technique for in situ remediations of PCBs contaminated sediments.[Abstract] [Full Text] [Related] [New Search]