These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Intensified ozonation in packed bubble columns for water treatment: Focus on mass transfer and humic acids removal.
    Author: Yang X, Liu Z, Manhaeghe D, Yang Y, Hogie J, Demeestere K, Van Hulle SWH.
    Journal: Chemosphere; 2021 Nov; 283():131217. PubMed ID: 34467950.
    Abstract:
    Ozonation has been widely applied for the oxidation of contaminants in wastewater, and the disinfection of water. However, low ozone (O3) mass transfer efficiency in common ozonation reactors requires high O3 doses and causes high energy consumption. In this study, to intensify the O3 mass transfer and oxidation of humic acids (HA) solution, a lava rock packed bubble column (LBC) and a metal pall ring packed bubble column (MBC) were developed and evaluated. In comparison with non-packed bubble column (BC), both LBC and MBC enhanced the O3 mass transfer efficiency and the generation of hydroxyl radicals, thereby increasing the HA removal from an aqueous solution. At applied O3 dose of 33.3 mg/(Lcolumn h), the HA removal efficiency in BC was only 47%. When MBC and LBC were applied, it increased to 66% and 72%, respectively. Meanwhile, the O3 utilization efficiency in LBC reached 68%, which was higher than that in MBC (50%) and BC (21%). Consequently, LBC has the lowest energy consumption (EEO) for HA removal (1.4 kWh/m3), followed by MBC (1.6 kWh/m3) and BC (2.9 kWh/m3). LBC had better performance than MBC due to the adsorptive and catalytic roles of lava rock on the ozonation process. This study demonstrates the advantages of using lava rocks as packed materials in O3 bubble column over metal pall rings in intensifying O3 mass transfer and organic matters removal, which provides some insights into promoting the industrial application of O3.
    [Abstract] [Full Text] [Related] [New Search]