These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Structural Basis for Anti-non-alcoholic Fatty Liver Disease and Diabetic Dyslipidemia Drug Saroglitazar as a PPAR α/γ Dual Agonist. Author: Honda A, Kamata S, Satta C, Machida Y, Uchii K, Terasawa K, Nemoto A, Oyama T, Ishii I. Journal: Biol Pharm Bull; 2021; 44(9):1210-1219. PubMed ID: 34471049. Abstract: Peroxisome proliferator-activated receptors (PPARs) are nuclear receptor-type transcription factors that consist of three subtypes (α, γ, and β/δ) with distinct functions and PPAR dual/pan agonists are expected to be the next generation of drugs for metabolic diseases. Saroglitazar is the first clinically approved PPARα/γ dual agonist for treatment of diabetic dyslipidemia and is currently in clinical trials to treat non-alcoholic fatty liver disease (NAFLD); however, the structural information of its interaction with PPARα/γ remains unknown. We recently revealed the high-resolution co-crystal structure of saroglitazar and the PPARα-ligand binding domain (LBD) through X-ray crystallography, and in this study, we report the structure of saroglitazar and the PPARγ-LBD. Saroglitazar was located at the center of "Y"-shaped PPARγ-ligand-binding pocket (LBP), just as it was in the respective region of PPARα-LBP. Its carboxylic acid was attached to four amino acids (Ser289/His323/His449/Thr473), which contributes to the stabilization of Activating Function-2 helix 12, and its phenylpyrrole moiety was rotated 121.8 degrees in PPARγ-LBD from that in PPARα-LBD to interact with Phe264. PPARδ-LBD has the consensus four amino acids (Thr253/His287/His413/Tyr437) towards the carboxylic acids of its ligands, but it seems to lack sufficient space to accept saroglitazar because of the steric hindrance between the Trp228 or Arg248 residue of PPARδ-LBD and its methylthiophenyl moiety. Accordingly, in a coactivator recruitment assay, saroglitazar activated PPARα-LBD and PPARγ-LBD but not PPARδ-LBD, whereas glycine substitution of either Trp228, Arg248, or both of PPARδ-LBD conferred saroglitazar concentration-dependent activation. Our findings may be valuable in the molecular design of PPARα/γ dual or PPARα/γ/δ pan agonists.[Abstract] [Full Text] [Related] [New Search]