These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: The subcellular sites of sulfation of mouse thyrotropin and free alpha subunits: studies employing subcellular fractionation and inhibitors of the intracellular translocation of proteins. Author: Magner JA, Papagiannes E. Journal: Endocr Res; 1987; 13(4):337-61. PubMed ID: 3447883. Abstract: To determine the subcellular sites of sulfation of thyrotropin (TSH) and free alpha-subunits, mouse thyrotropic tumor minces were incubated simultaneously with [3H]Met and [35S]SO4 for 1 or 3h, homogenized, and fractionated by discontinuous sucrose gradient ultracentrifugation. Dual-labeled TSH or free alpha-subunits were immunoprecipitated, and analyzed by SDS-gel electrophoresis. Endoglycosidase F released all [35S], but little [3H], from the dual-labeled species, indicating that [35S]SO4 was incorporated into oligosaccharides of TSH and free alpha-subunits. Both [35S]TSH and [35S] free alpha-subunits were predominantly in Golgi fractions at 1 and 3 h, but small amounts were also detected in fractions enriched in rough endoplasmic reticulum (RER). Similar distributions of [35S]SO4-labeled species were noted in cell fractions prepared from mouse pituitaries. Pituitaries from hypothyroid mice were incubated with [3H]Met and [35S]SO4 for 2 h, then chased for 4 or 16 h in the absence or presence of 2 uM monensin (Mon) or 10 uM carboxyl cyanide m-chlorophenylhydrazone (CCCP). At 4h, release into the medium of [3H]TSH was inhibited 59% and 86% by Mon and CCCP, respectively; release of [35S]TSH was inhibited 28% and 46%. At 4h, release of [3H]free alpha-subunits was inhibited 58% and 81% by these drugs, respectively; release of [35S]free alpha-subunits was inhibited 6% and 50%. Thus, Mon and CCCP inhibited the release of each [3H] species more than the [35S] species, indicating that most sulfation occurred in Golgi.[Abstract] [Full Text] [Related] [New Search]