These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simple and near-zero-waste processing for recycling gold at a high purity level from waste printed circuit boards. Author: Neto IFF, Soares HMVM. Journal: Waste Manag; 2021 Nov; 135():90-97. PubMed ID: 34478952. Abstract: This work proposes an efficient and simple hydrometallurgical process based on a chlorination step followed by an ion-exchange step for recycling gold (Au) from a waste printed circuit boards (WPCBs) enriched in Au resulting from a first leaching step under mild oxidizing conditions for extracting Cu and other base metals. Under optimized [3.5 mol/L HCl and 0.46 mol/L NaClO, with a liquid/solid (L/S) ratio of 40, at 40 °C for 3 h with agitation] leaching conditions, 95% Au was extracted from the residue originating a multi-metal solution containing 1.0% Au. Subsequently, Au (initial concentration: 38 µmol/L) present in the multimetal-leached solution was purified in continuous mode using two strong anionic exchange resins: DOW™ XZ-91419.00 and Purogold™ A194. Both resins were suitable in purifying Au from the multimetal-leaching solution, with at least 70% of Au recovered relative to the initial residue. When the DOW™ XZ-91419.00 resin was used, a solution containing 1.7 mmol/L Au with a purity grade of 94% was obtained, with Pb and Sn being the major contaminants (3.3 and 2.4%, respectively). For Purogold™ A194 resin, a solution containing 0.73 mmol/L Au with a purity grade of 92% was achieved; Ag, Pb and Pd were the major contaminants (1.4, 3.6 and 1.8%, respectively). In conclusion, this work demonstrates a novel hydrometallurgical strategy for recycling Au with a high grade from WPCBs, minimizing the number of leaching and purification steps and the amount of waste created.[Abstract] [Full Text] [Related] [New Search]