These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Inhibition of GARS1-DT Protects Against Hypoxic Injury in H9C2 Cardiomyocytes via Sponging miR-212-5p.
    Author: Li X, Dang Y.
    Journal: J Cardiovasc Pharmacol; 2021 Nov 01; 78(5):e714-e721. PubMed ID: 34483291.
    Abstract:
    The present study aimed to elucidate the function of long noncoding RNA GARS1-DT in hypoxia-induced injury in ex-vivo cardiomyocytes and explore its underlying mechanism. Hypoxic injury was confirmed in H9C2 cells by the determination of cell viability, migration, invasion, and apoptosis. GARS1-DT expression was estimated in H9C2 cells after hypoxia. We then measured the effects of GARS1-DT knockdown on hypoxia-induced H9C2 cells. The interaction between GARS1-DT and miR-212-5p was also investigated. Hypoxia treatment led to cell damage in H9C2 cardiomyocytes, accompanied with the upregulation of GARS1-DT expression. Transfection of GARS1-DT small interfering RNA remarkably attenuated hypoxia-induced injury by enhancing cell viability, migration, and invasion, and reducing apoptosis. Furthermore, GARS1-DT served as an endogenous sponge for miR-212-5p, and its expression was negatively regulated by GARS1-DT. The effects of GARS1-DT knockdown on hypoxia-induced injury were significantly abrogated by miR-212-5p silence. Besides, suppression of GARS1-DT activated PI3K/AKT pathway in hypoxia-treated H9C2 cells, which were reversed by inhibition of miR-212-5p. Our findings demonstrated the novel molecular mechanism of GARS1-DT/miR-212-5p/PI3K/AKT axis on the regulation of hypoxia-induced myocardial injury in H9C2 cells, which may provide potential therapeutic targets for acute myocardial infarction treatment.
    [Abstract] [Full Text] [Related] [New Search]