These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Anconeus motor unit firing rates during isometric and muscle-shortening contractions comparing young and very old adults.
    Author: Kirk EA, Gilmore KJ, Rice CL.
    Journal: J Neurophysiol; 2021 Oct 01; 126(4):1122-1136. PubMed ID: 34495770.
    Abstract:
    With effects of aging, voluntary neural drive to the muscle, measured as motor unit (MU) firing rate, is lower in older adults during sustained isometric contractions compared with young adults, but differences remain unknown during limb movements. Therefore, our purpose was to compare MU firing rates during both isometric and shortening contractions between two adult age groups. We analyzed intramuscular electromyography of single-MU recordings in the anconeus muscle of young (n = 8, 19-33 yr) and very old (n = 13, 78-93 yr) male adults during maximal voluntary contractions (MVCs). In sustained isometric and muscle-shortening contractions during limb movement, MU trains were linked with elbow joint kinematic parameters throughout the contraction time course. The older group was 33% weaker and 10% slower during movements than the young group (P < 0.01). In isometric contractions, median firing rates were 42% lower (P < 0.01) in the older group (18 Hz) compared with the young group (31 Hz), but during shortening contractions firing rates were higher for both age groups and not statistically different between groups. As a function of contraction time, firing rates at MU recruitment threshold were 39% lower in the older group, but the firing rate decrease was attenuated threefold throughout shortening contraction compared with the young group. At the single-MU level, age-related differences during isometric contractions (i.e., pre-movement initiation) do not remain constant throughout movement that comprises greater effects of muscle shortening. Results indicate that neural drive is task dependent and during movement in older adults it is decreased minimally.NEW & NOTEWORTHY Changes of neural drive to the muscle with adult aging, measured as motor unit firing rates during limb movements, are unknown. Throughout maximal voluntary efforts we found that, in comparison with young adults, firing rates were lower during isometric contraction in older adults but not different during elbow extension movements. Despite the older group being ∼33% weaker across contractions, their muscles can receive neural drive during movements that are similar to that of younger adults.
    [Abstract] [Full Text] [Related] [New Search]