These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gram-Scale Synthesis of an Ultrastable Microporous Metal-Organic Framework for Efficient Adsorptive Separation of C2H2/CO2 and C2H2/CH4. Author: Xu N, Jiang Y, Sun W, Li J, Wang L, Jin Y, Zhang Y, Wang D, Duttwyler S. Journal: Molecules; 2021 Aug 24; 26(17):. PubMed ID: 34500553. Abstract: A highly water and thermally stable metal-organic framework (MOF) Zn2(Pydc)(Ata)2 (1, H2Pydc = 3,5-pyridinedicarboxylic acid; HAta = 3-amino-1,2,4-triazole) was synthesized on a large scale using inexpensive commercially available ligands for efficient separation of C2H2 from CH4 and CO2. Compound 1 could take up 47.2 mL/g of C2H2 under ambient conditions but only 33.0 mL/g of CO2 and 19.1 mL/g of CH4. The calculated ideal absorbed solution theory (IAST) selectivities for equimolar C2H2/CO2 and C2H2/CH4 were 5.1 and 21.5, respectively, comparable to those many popular MOFs. The Qst values for C2H2, CO2, and CH4 at a near-zero loading in 1 were 43.1, 32.1, and 22.5 kJ mol-1, respectively. The practical separation performance for C2H2/CO2 mixtures was further confirmed by column breakthrough experiments.[Abstract] [Full Text] [Related] [New Search]