These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Temporal separation of two part-letter arrays and size changes in a nonmasking work-superiority effect.
    Author: Solman RT.
    Journal: Perception; 1987; 16(5):655-69. PubMed ID: 3451193.
    Abstract:
    In two experiments subjects were asked to report the identity of a position-cued critical letter in an array of four letters. Four types of arrays were used: (i) unpronounceable nonwords; (ii) pronounceable nonwords ('pseudowords'); (iii) words in which the critical letter was minimally constrained by the context letters; and (iv) words in which the critical letter was maximally constrained by the context letters. All four-letter stimuli were presented in two parts. A leading array in which the information from two quadrants of a vertical by horizontal division of each letter was presented, and, after intervals of 0, 20, 40, 80, 100, 120, 160, 320, and 480 ms and infinity (ie, no trailing array), a trailing array of the complementary letter parts. In experiment 1 a single group of eight subjects responded to the one hundred and sixty combinations of the four types of letter strings, the four serial positions, and the ten stimulus onset asynchrony values. In experiment 2 the stimulus onset asynchrony values were varied among subjects, with twelve subjects responding at each value. The results from these two studies were generally similar. Performance in the word conditions was consistently superior to performance in the nonword conditions, and the magnitude of this difference (ie, the word-superiority effect) increased with increasing stimulus onset asynchrony up to 120 ms, and then gradually declined. The fact that the magnitude of the word-superiority effect initially increased with the separation of leading and trailing arrays was interpreted as support for Johnston's suggestion that letters in words are represented during visual encoding both in the form of individual letter percepts and in a decay-resistant word percept, as opposed to letters in nonwords, which are represented only as decay-susceptible letter percepts. The experimental findings are discussed in relation to the 'interactive activation' model of word perception.
    [Abstract] [Full Text] [Related] [New Search]