These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Applications of nDATA for screening, quantitation, and identification of pesticide residues in fruits and vegetables using UHPLC/ESI Q-Orbitrap all ion fragmentation and data independent acquisition.
    Author: Wang J, Chow W, Wong JW, Chang J.
    Journal: J Mass Spectrom; 2021 Sep; 56(9):e4783. PubMed ID: 34519115.
    Abstract:
    High sample throughput and effective multiresidue methods for screening, quantitation, and identification are desired for the analysis of a large number of pesticides in routine monitoring programs for food safety. This study was designed to explore the use of an UHPLC/ESI Q-Orbitrap nontarget data acquisition for target analysis (nDATA) workflow for screening 655 pesticides and quantifying a small group of 46 most likely incurred pesticide residues in fruits and vegetables in a single analysis. High-resolution mass spectrometers such as the Q-Orbitrap offer unique applications for pesticide analysis using full MS scan with data independent acquisition (DIA) or all ion fragmentation (AIF) scan. The experiments were designed to achieve a balance between selectivity and cycle time by considering parameter settings such as mass resolution and the number of mass isolation windows or isolation window widths. Coupled with ultra-high performance liquid chromatography (UHPLC), both full MS/DIA and full MS/AIF nDATA workflows were evaluated for screening, quantification, and identification in a single analysis. In general, UHPLC/ESI full MS/vDIA detected more fragment ions per pesticide than AIF when one to four fragments were compared. UHPLC/ESI full MS/vDIA and AIF generated comparable quantitative results, but the latter provided slightly better repeatability likely due to its shorter cycle time and more scans across a chromatographic peak. UHPLC/ESI full MS/vDIA may be preferable for screening, quantitation and identification when the testing scope covers a few hundreds of pesticides in a single analysis.
    [Abstract] [Full Text] [Related] [New Search]