These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Dosimetric analysis of three-dimensional conformal radiotherapy, intensity-modulated radiotherapy-step and shoot, helical tomotherapy, and volumetric modulated arc therapy in prostate cancer radiotherapy.
    Author: Gozal F, Gondhowiardjo SA, Kodrat H, Wibowo WE.
    Journal: J Cancer Res Ther; 2021; 17(4):893-900. PubMed ID: 34528538.
    Abstract:
    INTRODUCTION: There is limited study comparing dosimetry parameters in detail. In regard to prostate cancer, there are four different techniques, namely three-dimensional conformal radiotherapy (3D-CRT), intensity-modulated radiotherapy-step and shoot (IMRT-SS), IMRT-helical tomotherapy (HT), and volumetric-modulated arc therapy (VMAT). MATERIALS AND METHODS: Experimental study with intervention on ten prostate cancer patients' computed tomography planning data. 78 Gy dose in 39 fractions was given for planning target volume.Experimental study with intervention on ten prostate cancer patients' computed tomography planning data. 78 Gy dose in 39 fractions was given for planning target volume. RESULTS: The mean V75 Gy rectum and bladder between 3D-CRT and the other three abovementioned techniques all showed significant results (P < 0.05). V5 Gy remaining volume at risk (RVR) between 3D-CRT versus VMAT and HT, IMRT-SS versus HT, and VMAT versus HT is statistically significant (P < 0.0001). The longest radiation time was done with HT (mean 4.70 ± 0.84 min). CONCLUSION: V75 Gy rectum bladder between 3D-CRT techniques differ significantly compared to the three other techniques and may not be suitable to the implementation of escalation doses. The HT technique produced the highest V5 Gy RVR and needed the highest monitor unit amount and the longest radiation duration. The VMAT technique was considered capable of realizing dose escalation in prostate cancer radiotherapy by minimizing toxicity in the rectum and bladder with the shortest radiation duration.
    [Abstract] [Full Text] [Related] [New Search]