These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Protective effect of Salidroside on hypoxia-related liver oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways. Author: Xiong Y, Wang Y, Xiong Y, Teng L. Journal: Food Sci Nutr; 2021 Sep; 9(9):5060-5069. PubMed ID: 34532015. Abstract: High-altitude hypoxia-induced oxidative stress and inflammation played an essential role in the incidence and development of liver injury. Salidroside (Sal), a phenylpropanoid glycoside extracted from the plant Rhodiola rosea, has recently demonstrated antioxidant, anti-inflammatory, and antihypoxia properties. Herein, we hypothesized that salidroside may alleviate hypoxia-induced liver injury via antioxidant and antiinflammatory-related pathways. A high-altitude hypoxia animal model was established using hypobaric chamber. Male SD rats were randomly divided into the control group, hypoxia group, control +Sal group, and hypoxia +Sal group. Salidroside treatment significantly inhibited hypoxia-induced increases of serum and hepatic pro-inflammatory cytokines release, hepatic ROS production and MDA contents; attenuated hypoxia-induced decrease of hepatic SOD, CAT, and GSH-Px activities. Furthermore, salidroside treatment also potentiated the activation of Nrf2-mediated anti-oxidant pathway, as indicated by upregulation of n-Nrf2 and its downstream HO-1 and NQO-1. In vitro study found that blocking the Nrf2 pathway using specific inhibitor ML385 significantly reversed the protective effect of salidroside on hypoxia-induced liver oxidative stress. In addition, salidroside treatment significantly inhibited hepatic pro-inflammatory cytokines release via JAK2/STAT3-mediated pathway. Taken together, our findings suggested that salidroside protected against hypoxia-induced hepatic oxidative stress and inflammation via Nrf2 and JAK2/STAT3 signaling pathways.[Abstract] [Full Text] [Related] [New Search]