These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: RNAi silencing of the 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) gene inhibits vitellogenesis in Chinese mitten crab Eriocheir sinensis. Author: Chen T, Xu R, Sheng N, Che S, Zhu L, Liu F, Su S, Ding S, Li X. Journal: Comp Biochem Physiol A Mol Integr Physiol; 2022 Jan; 263():111078. PubMed ID: 34536567. Abstract: The sesquiterpenoid methyl farnesoate (MF), a de-epoxide form of insect juvenile hormone III (JH III), plays an essential role in regulating many crucial physiological processes in crustaceans including vitellogenesis and reproduction. 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) is an important rate-limiting enzyme in the mevalonate pathway, which is critical for the synthesis of JH III and MF. In the present study, a full-length cDNA encoding HMGR (EsHMGR) in Eriocheir sinensis was isolated and characterised. Sequence analysis of EsHMGR revealed that it belongs to Class I HMGR family proteins with HMG-CoA-binding and NADPH-binding domains, both important for HMGR activity. In addition to its ubiquitous tissue expression, expression of EsHMGR was highly specific to the ovary, the main site of Vg synthesis. During ovarian development, EsHMGR expression in ovary displayed a stage-specific pattern, and was correlated with expression of vitellogenin (EsVg) in hepatopancreas, which suggests that EsHMGR possibly involved in vitellogenesis. To further investigate the functional role of EsHMGR in vitellogenin biosynthesis in E. sinensis, RNA interference-mediated gene silencing was carried out both in vitro and in vivo. Quantitative PCR results showed that injection of EsHMGR double-stranded RNA (dsRNA) led to a significant decrease in EsVg expression levels in ovary and hepatopancreas both in vitro and in vivo. Taken together, the results suggest that EsHMGR is involved in vitellogenin biosynthesis in female E. sinensis, which may provide a new resource for HMGR enzymes participating in reproduction in crustaceans.[Abstract] [Full Text] [Related] [New Search]