These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Gaseous isopropanol removal in a microbial fuel cell with deoxidizing anode: Performance, anode characteristics and microbial community. Author: Liu SH, Lin HH, Lin CW. Journal: J Hazard Mater; 2022 Feb 05; 423(Pt B):127200. PubMed ID: 34537644. Abstract: A deoxidizing packing material (DPM) with an encapsulated deoxidizing agent (DA) was developed to construct the packed anodes of a trickle-bed microbial fuel cell (TB-MFC) for treating waste gas. The encapsulated DA can consume O2 in waste gas and increase the voltage output and power density (PD) of the constructed TB-MFC. The DPM effectively enables the circulating water in TB-MFC for maintaining a low level of dissolved oxygen for 80 h. The results revealed that when the concentration of isopropanol (IPA) in waste gas was 0.74 g/m3, the TB-MFC (DPM with DA) exhibited an IPA removal efficiency (RE) of up to 99.7%. When DPM with DA was used as the packing material of the TB-MFC (486.6 mW/m3), the PD was 2.54 times that obtained when using coke as the packing material (191.6 mW/m3). The next-generation sequencing results demonstrated that because the oxygen content of the MFC anode chamber decreased over time in the TB-MFC, the richness of anaerobic electrogens (Pseudoxanthomonas, Flavobacterium, and Ferruginibacter) in the packing materials was increased. These electrogens mainly attached to the DPM, and IPA-degraders appeared in the circulating water of the TB-MFC. This enabled the TB-MFC to simultaneously achieve a high voltage output and IPA RE.[Abstract] [Full Text] [Related] [New Search]