These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Genome-wide analysis reveals associations between climate and regional patterns of adaptive divergence and dispersal in American pikas.
    Author: Schmidt DA, Waterhouse MD, Sjodin BMF, Russello MA.
    Journal: Heredity (Edinb); 2021 Nov; 127(5):443-454. PubMed ID: 34537819.
    Abstract:
    Understanding the role of adaptation in species' responses to climate change is important for evaluating the evolutionary potential of populations and informing conservation efforts. Population genomics provides a useful approach for identifying putative signatures of selection and the underlying environmental factors or biological processes that may be involved. Here, we employed a population genomic approach within a space-for-time study design to investigate the genetic basis of local adaptation and reconstruct patterns of movement across rapidly changing environments in a thermally sensitive mammal, the American pika (Ochotona princeps). Using genotypic data at 49,074 single-nucleotide polymorphisms (SNPs), we analyzed patterns of genome-wide diversity, structure, and migration along three independent elevational transects located at the northern extent (Tweedsmuir South Provincial Park, British Columbia, Canada) and core (North Cascades National Park, Washington, USA) of the Cascades lineage. We identified 899 robust outlier SNPs within- and among-transects. Of those annotated to genes with known function, many were linked with cellular processes related to climate stress including ATP-binding, ATP citrate synthase activity, ATPase activity, hormone activity, metal ion-binding, and protein-binding. Moreover, we detected evidence for contrasting patterns of directional migration along transects across geographic regions that suggest an increased propensity for American pikas to disperse among lower elevation populations at higher latitudes where environments are generally cooler. Ultimately, our data indicate that fine-scale demographic patterns and adaptive processes may vary among populations of American pikas, providing an important context for evaluating biotic responses to climate change in this species and other alpine-adapted mammals.
    [Abstract] [Full Text] [Related] [New Search]