These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: MiR-26a-5p Targets WNT5A to Protect Cardiomyocytes from Injury Due to Hypoxia/Reoxygenation Through the Wnt/β-catenin Signaling Pathway. Author: Yan G, Wang J, Fang Z, Yan S, Zhang Y. Journal: Int Heart J; 2021 Sep 30; 62(5):1145-1152. PubMed ID: 34544974. Abstract: This study aimed to investigate the effect and mechanism of miR-26a-5p on cardiomyocyte injury induced by hypoxia/reoxygenation (H/R).After construction of an H/R model in rat cardiomyocyte H9c2 cells, miR-26a-5p in the cells was interfered with (cells transfected with miR-26a-5p inhibitor) or overexpressed (cells transfected with a miR-26a-5p mimics). The viability and the apoptosis rate of cells in each group were detected using CCK-8 and flow cytometry; the relationship between miR-26a-5p and WNT5A was verified by a dual-luciferase reporter assay; the expression of miR-26a-5p, WNT5A, cleavedcaspase3 and Wnt/β-catenin signaling pathway-related proteins in each group was detected using qRT-PCR or Western blot; LDH release, SOD, and GSH-PX activities in each group were detected by kit.In the H/R group, the expression level of miR-26a-5p was significantly decreased, whereas the expression level of WNT5A was significantly increased. The activity of the Wnt/β-catenin signaling pathway was up-regulated; the level of LDH released was significantly increased; and activities of SOD and GSH-PX were significantly decreased. The aforementioned changes resulted in decreased cell activity and increased apoptosis rate. The overexpression of miR-26a-5p could reduce the expression level of WNT5A, the activity of the Wnt/β-catenin signaling pathway, and the apoptosis rate and restore the cell viability.These results suggest that miR-26a-5p can target WNT5A and thus, inhibit the Wnt/β-catenin signaling pathway activity, inhibiting H/R-induced cardiomyocyte injury and apoptosis.[Abstract] [Full Text] [Related] [New Search]