These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Hyperbranched polyethylenimine-modified polyethersulfone (HPEI/PES) and nAg@HPEI/PES membranes with enhanced ultrafiltration, antibacterial, and antifouling properties. Author: Okoro HK, Ndlwana L, Ikhile MI, Barnard TG, Ngila JC. Journal: Heliyon; 2021 Sep; 7(9):e07961. PubMed ID: 34553089. Abstract: This study reports a simple fabrication of polyethersulfone (PES)-based membranes, their characterisation, and application. These membranes are modified with hyperbranched polyethyleneimine (HPEI) and -silver (nAg)-decorated HPEI. These were then compared for filtration, organic fouling, antifouling, and antibacterial properties against the neat PES membrane. The fabricated membranes were characterised for their chemistry using attenuated transmission reflectance-equipped Fourier transform infrared spectroscopy (ATR-FTIR) and x-ray photoelectron spectroscopy (XPS). As such, the presence of HPEI interactions between the nAg and HPEI in the membranes was confirmed. An energy-dispersive x-ray detector coupled with a scanning electron microscopy (SEM-EDS) and atomic force microscopy (AFM) were used to study morphological, compositional, topographical, and topological changes to the membrane due to the modifications. A thermogravimetric analyser (TGA) was also utilised to evaluate the effect of modification on thermal stability of the resulting membranes. Optical contact angle (OCA) interrogated the extent of membrane/water interactions which indicated enhanced hydrophilicity due to the modification. Dead-end filtration using these membranes indicated enhanced pure water permeate fluxes and protein rejection (bovine serum albumin, BSA). The results of the BSA rejection for the HPEI/PES membranes were a maximum of 98% while those of the nAg@HPEI/PES ranged between 30-87%. The membranes possessed high flux recoveries, indicating great potential for the membranes for antifouling applications in water treatment. Extensive antibacterial studies were carried out on the membranes to probe bioactivity. Enhanced activity was recorded (except for neat PES) with zone inhibitions of up to 7 mm against five bacterial strains including E. Coli and K. Pneumoniae as found in several wastewater streams. The antibacterial properties of these membranes mean they can prolong membrane operational lifetime by mitigating biofilming during water treatment.[Abstract] [Full Text] [Related] [New Search]