These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CO2/N2 Gas Separation Using Pebax/ZIF-7-PSf Composite Membranes.
    Author: Yoon SS, Lee HK, Hong SR.
    Journal: Membranes (Basel); 2021 Sep 14; 11(9):. PubMed ID: 34564525.
    Abstract:
    In this study, we mixed the zeolitic imidazolate framework-7 (ZIF-7) with poly(ether-b-amide)® 2533 (Pebax-2533) and used it as a selective layer for a composite membrane. We prepared the composite membrane's substrate using polysulfone (PSf), adjusted its pore size using polyethylene glycol (PEG), and applied polydimethylsiloxane (PDMS) to the gutter layer and the coating layer. Then, we investigated the membrane's properties of gases by penetrating a single gas (N2, CO2) into the membrane. We identified the peaks and geometry of ZIF-7 to determine if it had been successfully synthesized. We confirmed that ZIF-7 had a BET surface area of 303 m2/g, a significantly high Langmuir surface area of 511 m2/g, and a high CO2/N2 adsorption selectivity of approximately 50. Considering the gas permeation, with ZIF-7 mixed into Pebax-2533, N2 permeation decreased from 2.68 GPU in a pure membrane to 0.43 GPU in the membrane with ZIF-7 25 wt%. CO2 permeation increased from 18.43 GPU in the pure membrane to 26.22 GPU in the ZIF-7 35 wt%. The CO2/N2 ideal selectivity increased from 6.88 in the pure membrane to 50.43 in the ZIF-7 25 wt%. Among the membranes, Pebax-2533/ZIF-7 25 wt% showed the highest permeation properties and the characteristics of CO2-friendly ZIF-7.
    [Abstract] [Full Text] [Related] [New Search]