These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Electrochemiluminescence biosensor based on molybdenum disulfide-graphene quantum dots nanocomposites and DNA walker signal amplification for DNA detection. Author: Sun Y, Huang C, Sun X, Wang Q, Zhao P, Ge S, Yu J. Journal: Mikrochim Acta; 2021 Sep 26; 188(10):353. PubMed ID: 34568991. Abstract: Based on the prominent electrochemiluminescence (ECL) performances of molybdenum disulfide-graphene quantum dots (MoS2-GQDs) nanocomposite and combined with enzyme-assisted recycling DNA walker signal amplification, an "on-off" switch ECL biosensor was proposed for sensitive assay of specific DNA sequences. Noticeably, MoS2 with two-dimensional nanosheet structure increased the loading capacity of GQDs to support abundant hairpin DNA (H). The composites of MoS2 and GQDs facilitated the charge transfer in ECL process, which significantly improved the ECL signal to achieve an "on" state. Then, the DNA walker cyclic amplification was performed by adding the target DNA and exonuclease III (Exo III). Finally, the DNA2-Fc-DNA1 was introduced into the system as ECL signal quencher, turning the ECL signal into an "off" state. The sensitive assay of ultra-low concentration specific DNA sequences was realized according to the variation of ECL signal strength before and after the existence of target DNA. The proposed ECL biosensor showed a good linear relationship ranging from 1 nM to 100 aM with a detection limit of 25.1 aM, providing a powerful strategy for biomedical research and clinical analysis.[Abstract] [Full Text] [Related] [New Search]