These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Post-activation potentiation induced by concentric contractions at three speeds in humans. Author: Zero AM, Rice CL. Journal: Exp Physiol; 2021 Dec; 106(12):2489-2501. PubMed ID: 34569107. Abstract: NEW FINDINGS: What is the central question of this study? Is the degree of in human muscle affected by different shortening velocities, or contraction type? What are the main findings and their importance? The PAP response following maximal concentric contractions was independent of velocity. Slow and moderate velocity maximal contractions produced PAP responses like those from maximal isometric contractions when matched for contraction duration. Despite contraction type differences in cross-bridge and Ca2+ kinetics, maximal contractions, regardless of contraction modality, likely generate sufficient Ca2+ to induce maximal PAP. ABSTRACT: Post-activation potentiation (PAP) is the acute enhancement of contractile properties following a brief (<10 s) high-intensity contraction. Compared with isometric contractions, little is known about the PAP response induced by concentric conditioning contractions (CCs) and the effect of velocity. In the dorsiflexors of 11 participants, twitch responses were measured following 5 s of maximal effort concentric CCs at each of 10, 20 and 50°/s. Concentric PAP responses were compared to a maximal isometric voluntary contraction (MVC) matched for contraction time. Additionally, concentric CCs were compared to isometric CCs matched for mean torque, contraction area and time. The PAP response following maximal concentric CCs was independent of velocity and there was no difference in the PAP response between concentric CCs and an isometric MVC. During maximal contractions, regardless of contraction modality, there is likely sufficient Ca2+ to induce a similar full PAP response, and thus there was no difference between speeds or contraction type. Following concentric CCs there was a significantly larger peak twitch torque than following their isometric torque matches (49-58%), and faster maximal rates of torque development at the three speeds (62-77%). However, these responses are likely related to greater EMG in concentric contractions, 125-129% of isometric maximum compared to 38-54%, and not to contraction modality per se. Thus, PAP responses following maximal concentric CCs are not affected by velocity and responses are not different from an isometric MVC. This indicates maximal CCs of 5 s produce a maximal PAP response independent of contraction type (isometric vs. concentric) or shortening velocity.[Abstract] [Full Text] [Related] [New Search]