These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Improved Stability of Engineered Ammonia Production in the Plant-Symbiont Azospirillum brasilense.
    Author: Schnabel T, Sattely E.
    Journal: ACS Synth Biol; 2021 Nov 19; 10(11):2982-2996. PubMed ID: 34591447.
    Abstract:
    Bioavailable nitrogen is the limiting nutrient for most agricultural food production. Associative diazotrophs can colonize crop roots and fix their own bioavailable nitrogen from the atmosphere. Wild-type (WT) associative diazotrophs, however, do not release fixed nitrogen in culture and are not known to directly transfer fixed nitrogen resources to plants. Efforts to engineer diazotrophs for plant nitrogen provision as an alternative to chemical fertilization have yielded several strains that transiently release ammonia. However, these strains suffer from selection pressure for nonproducers, which rapidly deplete ammonia accumulating in culture, likely limiting their potential for plant growth promotion (PGP). Here we report engineered Azospirillum brasilense strains with significantly extend ammonia production lifetimes of up to 32 days in culture. Our approach relies on multicopy genetic redundancy of a unidirectional adenylyltransferase (uAT) as a posttranslational mechanism to induce ammonia release via glutamine synthetase deactivation. Testing our multicopy stable strains with the model monocot Setaria viridis in hydroponic monoassociation reveals improvement in plant growth promotion compared to single copy strains. In contrast, inoculation of Zea mays in nitrogen-poor, nonsterile soil does not lead to increased PGP relative to WT, suggesting strain health, resource competition, or colonization capacity in soil may also be limiting factors. In this context, we show that while engineered strains fix more nitrogen per cell compared to WT strains, the expression strength of multiple uAT copies needs to be carefully balanced to maximize ammonia production rates and avoid excessive fitness defects caused by excessive glutamine synthetase shutdown.
    [Abstract] [Full Text] [Related] [New Search]