These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Circ-RPPH1 knockdown retards breast cancer progression via miR-328-3p-mediated suppression of HMGA2.
    Author: Li J, Li Y, Cheng H.
    Journal: Clin Breast Cancer; 2022 Apr; 22(3):e286-e295. PubMed ID: 34593318.
    Abstract:
    BACKGROUND: Circular RNA Ribonuclease P RNA Component H1 (circ-RPPH1) was confirmed to act as an oncogene in many cancers to promote cancer progression. However, the exact function and mechanism of circ-RPPH1 in breast cancer (BC) remain vague. METHODS: The expression of circ-RPPH1, microRNA (miR)-328-3p and high-mobility group AT-hook 2 (HMGA2) was detected using quantitative real-time polymerase chain reaction and western blot. Cell viability, apoptosis, migration and invasion were determined using cell counting kit-8 assay, flow cytometry and transwell assay, respectively. Glucose metabolism was calculated by detecting glucose uptake and lactate production. The target correlations between miR-328-3p and circ-RPPH1 or HMGA2 were confirmed by dual-luciferase reporter assay. The murine xenograft model was established to conduct in vivo experiments. RESULTS: Circ-RPPH1 expression was elevated and miR-328-3p was decreased in BC tissues and cells. Circ-RPPH1 knockdown or miR-328-3p re-expression suppressed cell proliferation, migration, invasion and glycolysis but induced apoptosis in BC in vitro. Circ-RPPH1 was a sponge of miR-328-3p, and silencing of miR-328-3p reversed the inhibitory effects of circ-RPPH1 knockdown on BC cell malignant phenotypes and glycolysis. MiR-328-3p directly targeted HMGA2, and HMGA2 overexpression abolished the action of miR-328-3p in BC cells. Besides, circ-RPPH1 could regulate HMGA2 expression by miR-328-3p in BC cells. Moreover, murine xenograft model analysis suggested circ-RPPH1 knockdown inhibited tumor growth in vivo. CONCLUSION: Circ-RPPH1 knockdown retarded cell malignant phenotypes and glycolysis via miR-328-3p/HMGA2 axis in BC, providing a potential therapeutic target for BC treatment.
    [Abstract] [Full Text] [Related] [New Search]