These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: In vivo 3-Dimensional Kinematics Study of the Healthy Cervical Spine Based on CBCT Combined with 3D-3D Registration Technology. Author: Tang B, Yao H, Wang S, Zhong Y, Cao K, Wan Z. Journal: Spine (Phila Pa 1976); 2021 Dec 15; 46(24):E1301-E1310. PubMed ID: 34593735. Abstract: STUDY DESIGN: A cervical biomechanical study. OBJECTIVE: We sought to demonstrate the three-dimensional (3D) intervertebral motion characteristics of the cervical spine in healthy volunteers using cone beam computed tomography (CBCT) combined with 3D-3D registration technology. SUMMARY OF BACKGROUND DATA: No previous studies have used CBCT combined with 3D-3D registration technology to successfully documented in vivo 3D intervertebral six-degrees-of-freedom (6-DOF) motions of the cervical spine. METHODS: Twenty healthy subjects underwent cervical (C1-C7) CBCT scans in seven functional positions. Segmented 3D vertebral body models were established according to the cervical CBCT images. A 3D-to-3D registration was then performed for each vertebral body in the different positions to calculate the 3D segmental motion characteristics in vivo. RESULTS: During flexion-extension, the range-of-motion (ROM) of C1-C2 and C4-C5 was significantly greater than the other segments. The average coupled axial rotation and lateral bending of each segment were between 0.6° and 3.2°. The average coupling translations in all directions were between 0.2 and 2.1 mm. During axial rotation, the ROM of C1-C2 was 65.8 ± 5.9°, which accounted for approximately 70% of all axial rotation. The motion and displacement of C1-C2 coupled lateral bending were 11.4 ± 5.2° and 8.3 ± 1.9 mm, respectively. During lateral bending, the ROM of C3-C4 was significantly greater than C1-C2, C5-C6, and C6-C7. The coupled axial rotation of C1-C2 was 34.4 ± 8.1°, and the coupled lateral translation was 3.8 ± 0.5 mm. The coupled superoinferior and anteroposterior translation of each cervical segment were between 0.1 and 0.6 mm. CONCLUSION: CBCT combined with 3D-3D registration was used to accurately measure and record the ROMs of lateral bending, axial rotation, and flexion-extension in cervical vertebrae under physiological-load conditions. Our findings may contribute to the diagnosis of cervical spinal disease, the development of new surgical techniques, and the restoration of normal, cervical segmental movement.Level of Evidence: 3.[Abstract] [Full Text] [Related] [New Search]