These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Mussel-inspired hydrogels as tough, self-adhesive and conductive bioelectronics: a review. Author: Yu Q, Zheng Z, Dong X, Cao R, Zhang S, Wu X, Zhang X. Journal: Soft Matter; 2021 Oct 13; 17(39):8786-8804. PubMed ID: 34596200. Abstract: To overcome the wearable sensor's defects and achieve the goal of robust mechanical properties, long-term adhesion, sensitive electrical conductivity, the multifunctional hydrogels were inspired by various mussels on the base of catechol and its analogues. In this review, we review the strategies for improving the mechanical strength, adhesion, conductivity and antibacterial properties of mussel-inspired hydrogels as bioelectronics. Double network structures, nanocomposites, supramolecular block polymers and other strategies were utilized for achieving tough hydrogels to prevent tensile fractures under high deformation. Many mussel-inspired chemistries were incorporated for constructing skin-attachable hydrogel strain sensors and some strategies for controlling the oxidation of catechol were employed to achieve long-term adhesion. In addition, electrolytes, conductive fillers, conductive polymers and their relevant hydrophilic modifications were introduced for fabricating the conductive hydrogel bioelectronics to enhance the conductivity properties. Finally, the challenges and outlooks in this promising field are featured from the perspective of materials chemistry.[Abstract] [Full Text] [Related] [New Search]