These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Antimicrobial photodynamic therapy (aPDT) against vancomycin resistant Staphylococcus aureus (VRSA) biofilm disruption: A putative role of phagocytosis in infection control. Author: Akhtar F, Khan AU. Journal: Photodiagnosis Photodyn Ther; 2021 Dec; 36():102552. PubMed ID: 34597830. Abstract: Biofilm mediated infections have major clinical impact. Staphylococcus aureus is a pathogen that frequently causes biofilm forming infections, such as those associated with medical devices and persistent wounds. Microorganisms embedded in biofilm are impervious to antibiotics and other antimicrobial agents, thus they are difficult to eliminate. The upsurge of multi-drug resistant strains makes treating such illnesses even more difficult. Therefore, new strategies are required to combat such type of infections. In this work, we have proposed an alternative therapeutic option to eradicate preformed biofilm of vancomycin resistant Staphylococcus aureus (VRSA) and enhanced phagocytosis by neutrophils in fresh human blood using curcumin mediated antimicrobial photodynamic therapy (aPDT).At sub-MIC of curcumin, different anti-biofilm assays and microscopic examinations were performed, followed by 20 J/cm2 of blue laser light irradiation which corresponds to 52 s only. The result showed significant disruption of VRSA biofilm. Moreover, when curcumin-aPDT treated VRSA biofilm was exposed to whole blood from healthy donors, it was nearly completely eradicated. The present study suggests that curcumin-aPDT enhanced phagocytosis may be a useful strategy for inactivating VRSA biofilms adhering to medical implant surfaces.[Abstract] [Full Text] [Related] [New Search]