These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: One-Year Follow-Up in a Phase 1/2a Clinical Trial of an Allogeneic RPE Cell Bioengineered Implant for Advanced Dry Age-Related Macular Degeneration. Author: Kashani AH, Lebkowski JS, Rahhal FM, Avery RL, Salehi-Had H, Chen S, Chan C, Palejwala N, Ingram A, Dang W, Lin CM, Mitra D, Pennington BO, Hinman C, Faynus MA, Bailey JK, Mohan S, Rao N, Johnson LV, Clegg DO, Hinton DR, Humayun MS. Journal: Transl Vis Sci Technol; 2021 Aug 12; 10(10):13. PubMed ID: 34613357. Abstract: PURPOSE: To report 1-year follow-up of a phase 1/2a clinical trial testing a composite subretinal implant having polarized human embryonic stem cell (hESC)-derived retinal pigment epithelium (RPE) cells on an ultrathin parylene substrate in subjects with advanced non-neovascular age-related macular degeneration (NNAMD). METHODS: The phase 1/2a clinical trial included 16 subjects in two cohorts. The main endpoint was safety assessed at 365 days using ophthalmic and systemic exams. Pseudophakic subjects with geographic atrophy (GA) and severe vision loss were eligible. Low-dose tacrolimus immunosuppression was utilized for 68 days in the peri-implantation period. The implant was delivered to the worst seeing eye with a custom subretinal insertion device in an outpatient setting. A data safety monitoring committee reviewed all results. RESULTS: The treated eyes of all subjects were legally blind with a baseline best-corrected visual acuity (BCVA) of ≤ 20/200. There were no unexpected serious adverse events. Four subjects in cohort 1 had serious ocular adverse events, including retinal hemorrhage, edema, focal retinal detachment, or RPE detachment, which was mitigated in cohort 2 using improved hemostasis during surgery. Although this study was not powered to assess efficacy, treated eyes from four subjects showed an increased BCVA of >5 letters (6-13 letters). A larger proportion of treated eyes experienced a >5-letter gain when compared with the untreated eye (27% vs. 7%; P = not significant) and a larger proportion of nonimplanted eyes demonstrated a >5-letter loss (47% vs. 33%; P = not significant). CONCLUSIONS: Outpatient delivery of the implant can be performed routinely. At 1 year, the implant is safe and well tolerated in subjects with advanced dry AMD. TRANSLATIONAL RELEVANCE: This work describes the first clinical trial, to our knowledge, of a novel implant for advanced dry AMD.[Abstract] [Full Text] [Related] [New Search]