These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Interaction between Ionic Liquids and a Pt(111) Surface Probed by Coadsorbed CO as a Test Molecule. Author: Eschenbacher R, Schuschke C, Bühlmeyer H, Taccardi N, Wasserscheid P, Bauer T, Xu T, Libuda J. Journal: J Phys Chem Lett; 2021 Oct 21; 12(41):10079-10085. PubMed ID: 34624196. Abstract: We used temperature-programmed infrared reflection absorption spectroscopy (TP-IRAS) to study the desorption behavior of CO on Pt(111) coadsorbed with four kinds of ionic liquids (ILs), namely 1-butyl-1-methyl-pyrrolidinium-bis(trifluoromethylsulfonyl)imide ([C4C1Pyr][NTf2]), 1-ethyl-3-methyl-imidazolium-bis(trifluoromethylsulfonyl)imide ([C2C1Im][NTf2]), 1-butyl-1-methyl-pyrrolidinium-trifluoro-methanesulfonate ([C4C1Pyr][OTf]), and 1-butyl-1-methyl-pyrrolidinium-hexafluorophosphate ([C4C1Pyr][PF6]). We found that CO desorbs earlier from a Pt(111) surface with coadsorbed ILs than without. In addition, the CO desorption temperature varies between different types of coadsorbed ILs, which follows the order: [C4C1Pyr][PF6] (365 K) > [C4C1Pyr][NTf2] (362 K) > [C2C1Im][NTf2] (352 K) > [C4C1Pyr][OTf] (348 K). We ascribe the difference in CO desorption temperature to the different interaction strength between ILs and the Pt(111) surface. A stronger IL-Pt(111) interaction leads to a lower CO desorption temperature. We suggest that TP-IRAS experiments of CO coadsorbed with ILs can be a useful method to aid the characterization of the interaction strength between ILs and metal surfaces such as Pt(111).[Abstract] [Full Text] [Related] [New Search]