These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Chitosan and κ-carrageenan-derived nitrogen and sulfur co-doped carbon dots "on-off-on" fluorescent probe for sequential detection of Fe3+ and ascorbic acid. Author: Xu J, Wang Y, Sun L, Qi Q, Zhao X. Journal: Int J Biol Macromol; 2021 Nov 30; 191():1221-1227. PubMed ID: 34627843. Abstract: This study develops a high sensitive and selective "on-off-on" fluorescent probe for sequential detection of iron ion (Fe3+) and ascorbic acid (AA) based on nitrogen and sulfur co-doped carbon dots (N, S-CDs), which were synthesized by using chitosan and κ-carrageenan as raw materials through one-step hydrothermal protocol. The synthesized N,S-CDs possess particularly high quantum yield (QY = 59.31%), excellent stability and excitation dependent behavior, showing great potential for practical applications. Furthermore, N,S-CDs provided high selectivity and strong anti-interference to Fe3+ due to its fluorescence quenching performance, revealing a wide linear concentration range from 1 to 100 μM for the detection of Fe3+ ion with an extremely low limit of detection of 57 nM, and presented reliable and accurate results in actual sample detection of Fe3+. The overall fluorescence quenching mechanism of N,S-CDs with Fe3+ was due to the formation of N,S-CDs/Fe3+ initiated to the aggregation and electron transfer of N,S-CDs, resulting in the static quenching of fluorescence. More interestingly, AA could reduce Fe3+ to Fe2+ and efficaciously recover the quenched fluorescence of N,S-CDs/Fe3+. N,S-CDs/Fe3+ as "turn-on" fluorescent probe was further applied for detecting AA in a linear range of 0.5-90 μM with a detection limit of 38 nM.[Abstract] [Full Text] [Related] [New Search]