These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: An electrochemical aptasensor for detection of prostate-specific antigen using reduced graphene gold nanocomposite and Cu/carbon quantum dots. Author: Mehdipour G, Shabani Shayeh J, Omidi M, Pour Madadi M, Yazdian F, Tayebi L. Journal: Biotechnol Appl Biochem; 2022 Oct; 69(5):2102-2111. PubMed ID: 34632622. Abstract: We report a label-free electrochemical aptamer-based biosensor for the detection of human prostate-specific antigen (PSA). The thiolate DNA aptamer against PSA was conjugated to the reduced graphene oxide/Au (RGO-Au) nanocomposite through the self-assembly of Au-S groups. Owing to the large volume to surface ratio, the RGO-Au nanocomposite provides a large surface for aptamer loading. The RGO-Au/aptamer was combined with a Nafion polymer and immobilized on a glassy carbon electrode. The interaction of aptamer with PSA was studied by cyclic voltammetry, square wave voltammetry, and electrochemical impedance spectroscopy. The detection of limit for prepared electrode was obtained about 50 pg/mL at the potential of 0.4 V in potassium hexacyanoferrate [K4 Fe(CN)6 ] medium. To decrease the limit of detection (LOD) and applied potential of the prepared nanoprobe Cu/carbon quantum dots (CuCQD) is introduced as a new redox. The results show that this new electrochemical medium provides better conditions for the detection of PSA. LOD of a nanoprobe in CuCQD media was obtained as 40 pg/mL at the potential of -0.2 V. Under optimal conditions, the aptasensor exhibits a linear response to PSA with a LOD as small as 3 pg/mL. The present aptasensor is highly selective and sensitive and shows satisfactory stability and repeatability.[Abstract] [Full Text] [Related] [New Search]