These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: On the Multi-Functional Behavior of Graphene-Based Nano-Reinforced Polymers.
    Author: Zafeiropoulou K, Kostagiannakopoulou C, Geitona A, Tsilimigkra X, Sotiriadis G, Kostopoulos V.
    Journal: Materials (Basel); 2021 Oct 05; 14(19):. PubMed ID: 34640226.
    Abstract:
    The objective of the present study is the assessment of the impact performance and the concluded thermal conductivity of epoxy resin reinforced by layered Graphene Nano-Platelets (GNPs). The two types of used GNPs have different average thicknesses, <4 nm for Type 1 and 9-12 nm for Type 2. Graphene-based polymers containing different GNP loading contents (0.5, 1, 5, 10, 15 wt.%) were developed by using the three-roll mill technique. Thermo-mechanical (Tg), impact tests and thermal conductivity measurements were performed to evaluate the effect of GNPs content and type on the final properties of nano-reinforced polymers. According to the results, thinner GNPs were proven to be more promising in all studied properties when compared to thicker GNPs of the same weight content. More specifically, the glass transition temperature of nano-reinforced polymers remained almost unaffected by the GNPs inclusion. Regarding the impact tests, it was found that the impact resistance of the doped materials increased up to 50% when 0.5 wt.% Type 1 GNPs were incorporated within the polymer. Finally, the thermal conductivity of doped polymers with 15 wt.% GNPs showed a 130% enhancement over the reference material.
    [Abstract] [Full Text] [Related] [New Search]