These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Andrographolide sulfonate attenuates alveolar hypercoagulation and fibrinolytic inhibition partly via NF-κB pathway in LPS-induced acute respiratory distress syndrome in mice.
    Author: Qian H, Yang H, Li X, Yang G, Zheng X, He T, Li S, Liu B, Wu Y, Cheng Y, Shen F.
    Journal: Biomed Pharmacother; 2021 Nov; 143():112209. PubMed ID: 34649343.
    Abstract:
    BACKGROUND: Alveolar hypercoagulation and fibrinolytic inhibition are important characteristics during acute respiratory distress syndrome (ARDS), and NF-κB p65 signaling pathway is involved to regulate these pathophysiologies. We hypothesize that targeting NF-κB signal pathway could ameliorate alveolar hypercoagulation and fibrinolyitc inhibition, thus attenuating lung injury in ARDS. PURPOSE: We explore the efficacy and the potential mechanism of andrographolide sulfonate (Andro-S) on alveolar hypercoagulation and fibrinolytic inhibition in LPS-induced ARDS in mice. METHODS: ARDS was made by lipopolysaccharide (LPS) inhalation in C57BLmice. Andrographolide sulfonate (2.5, 5 and 10 mg/kg) was intraperitoneally given to the mice (once a day for three consecutive days) before LPS administration. NEMO binding domain peptide (NBD), an inhibitor of NF-κB, was used as the positive control and it replaced Andro-S in mice of NBD group. Mice in normal control received saline instead of LPS. Lung tissues and bronchoalveolar lavage fluid (BALF) were collected for analysis of alveolar coagulation, fibrinolytic inhibition as well as of pulmonary inflammatory response after 8 h of LPS inhalation. NF-κB signal pathway in lung tissue was simultaneously determined. RESULTS: Andro-S dose-dependently inhibited tissue factor (TF) and plasminogen activator inhibitor (PAI)-1 expressions either in mRNA or in protein in lung tissue of ARDS mice, and it also decreased the concentrations of TF, PAI-1, thrombin-antithrombin complex (TAT), procollagen peptide type Ⅲ (PⅢP) while promoting the production of activated protein C (APC) in BALF. Meanwhile, Andro-S effectively inhibited inflammatory response (interleukin 1β and myeloperoxidase) induced by LPS. LPS stimulation dramatically activated NF-κB signal pathway, indicated by increased expressions of phosphorylation of p65 (p-p65), p-IKKα/β and p-IκBα and the higher p65-DNA binding activity, which were all dose-dependently reversed by Andro-S. Andro-S and NBD presented similar efficacies. CONCLUSIONS: Andro-S treatment improves alveolar hypercoagulation and fibrinolytic inhibition and attenuates pulmonary inflammation in LPS-induced ARDS in mice partly through NF-κB pathway inactivation. The drug is expected to be an effective choice for ARDS.
    [Abstract] [Full Text] [Related] [New Search]