These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Metabolism of prostaglandins D2 and F2 alpha in primary cultures of rat hepatocytes.
    Author: Sago T, Nakayama R, Okumura T, Saito K.
    Journal: Biochim Biophys Acta; 1986 Dec 05; 879(3):330-8. PubMed ID: 3465372.
    Abstract:
    3H-Labeled prostaglandins D2 and F2 alpha rapidly degraded to more-polar metabolites in primary cultured rat hepatocytes. The metabolites of prostaglandins D2 and F2 alpha accumulated in the culture medium. The metabolites extracted by ethyl acetate at pH 3 were purified by silicic acid column and thin-layer chromatography of silica gel, and were analysed by gas chromatography-mass spectrometry. The major metabolites from prostaglandin D2 were identified as dinor-prostaglandin D1 (7 alpha,13-dihydroxy-9-ketodinorprost-11-enoic acid) and tetranor-prostaglandin D1 (5 alpha,11- dihydroxy-7-ketotetranorprost-9-enoic acid). Those from prostaglandin F2 alpha were identified as dinor-prostaglandin F1 alpha (7 alpha,9 alpha,13-trihydroxydinorprost-11-enoic acid), tetranor-prostaglandin F1 alpha (5 alpha,7 alpha,11-trihydroxytetranorprost-9-enoic acid) and 9 alpha,11 alpha,15-trihydroxyprost-13-ene-1,20-dioic acid. These data indicate that prostaglandins D2 and F2 alpha mainly degraded by beta-oxidation, which is the same process as reported earlier for prostaglandins E1 and E2, and that prostaglandin F2 alpha was also subjected to omega-oxidation.
    [Abstract] [Full Text] [Related] [New Search]