These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Multiple-relaxation-time finite-difference lattice Boltzmann model for the nonlinear convection-diffusion equation. Author: Chen X, Chai Z, Shang J, Shi B. Journal: Phys Rev E; 2021 Sep; 104(3-2):035308. PubMed ID: 34654116. Abstract: In this paper, a multiple-relaxation-time finite-difference lattice Boltzmann method (MRT-FDLBM) is developed for the nonlinear convection-diffusion equation (NCDE). Through designing the equilibrium distribution function and the source term properly, the NCDE can be recovered exactly from MRT-FDLBM. We also conduct the von Neumann stability analysis on the present MRT-FDLBM and its special case, i.e., single-relaxation-time finite-difference lattice Boltzmann method (SRT-FDLBM). Then, a simplified version of MRT-FDLBM (SMRT-FDLBM) is also proposed, which can save about 15% computational cost. In addition, a series of real and complex-value NCDEs, including the isotropic convection-diffusion equation, Burgers-Fisher equation, sine-Gordon equation, heat-conduction equation, and Schrödinger equation, are used to test the performance of MRT-FDLBM. The results show that both MRT-FDLBM and SMRT-FDLBM have second-order convergence rates in space and time. Finally, the stability and accuracy of five different models are compared, including the MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method [H. Wang, B. Shi et al., Appl. Math. Comput. 309, 334 (2017)10.1016/j.amc.2017.04.015], and the lattice Boltzmann method (LBM). The stability tests show that the sequence of stability from high to low is as follows: MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, the previous finite-difference lattice Boltzmann method, and LBM. In most of the precision test results, it is found that the order from high to low of precision is MRT-FDLBM, SMRT-FDLBM, SRT-FDLBM, and the previous finite-difference lattice Boltzmann method.[Abstract] [Full Text] [Related] [New Search]