These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Competitive Exclusion of Phytopathogenic Serratia marcescens from Squash Bug Vectors by the Gut Endosymbiont Caballeronia.
    Author: Mendiola SY, Stoy KS, DiSalvo S, Wynn CL, Civitello DJ, Gerardo NM.
    Journal: Appl Environ Microbiol; 2022 Jan 11; 88(1):e0155021. PubMed ID: 34669447.
    Abstract:
    Many insects harbor microbial symbiotic partners that offer protection against pathogens, parasitoids, and other natural enemies. Mounting evidence suggests that these symbiotic microbes can play key roles in determining infection outcomes in insect vectors, making them important players in the quest to develop novel vector control strategies. Using the squash bug Anasa tristis, we investigated how the presence of Caballeronia symbionts affected the persistence and intensity of phytopathogenic Serratia marcescens within the insect vector. We reared insects aposymbiotically and with different Caballeronia isolates, infected them with S. marcescens, and then sampled the insects periodically to assess the intensity and persistence of pathogen infection. Squash bugs harboring Caballeronia consistently had much lower-intensity infections and cleared S. marcescens significantly faster than their aposymbiotic counterparts. These patterns held even when we reversed the timing of exposure to symbiont and pathogen. Taken together, these results indicate that Caballeronia symbionts play an essential role in S. marcescens infection outcomes in squash bugs and could be used to alter vector competence to enhance agricultural productivity in the future. IMPORTANCE Insect-microbe symbioses have repeatedly been shown to profoundly impact an insect's ability to vector pathogens to other hosts. The use of symbiotic microbes to control insect vector populations is of growing interest in agricultural settings. Our study examines how symbiotic microbes affect the dynamics of a plant pathogen infection within the squash bug vector Anasa tristis, a well-documented pest of squash and other cucurbit plants and a vector of Serratia marcescens, the causative agent of cucurbit yellow vine disease. We provide evidence that the symbiont Caballeronia prevents successful, long-term establishment of S. marcescens in the squash bug. These findings give us insight into symbiont-pathogen dynamics within the squash bug that could ultimately determine its ability to transmit pathogens and be leveraged to interrupt disease transmission in this system.
    [Abstract] [Full Text] [Related] [New Search]