These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Metabolism of prostaglandin D2 in isolated rat lung: the stereospecific formation of 9 alpha,11 beta-prostaglandin F2 from prostaglandin D2. Author: Hayashi H, Ito S, Watanabe K, Negishi M, Shintani T, Hayaishi O. Journal: Biochim Biophys Acta; 1987 Feb 23; 917(3):356-64. PubMed ID: 3467796. Abstract: The metabolic transformation of exogenous prostaglandin D2 was investigated in isolated perfused rat lung. Dose-dependent formation (2-150 ng) of 9 alpha,11 beta-prostaglandin F2, corresponding to about 0.1% of the perfused dose of prostaglandin D2, was observed by specific radioimmunoassay both in the perfusate and in lung tissue after a 5-min perfusion. To investigate the reason for this low conversion ratio, we analyzed the metabolites of tritium-labeled 9 alpha,11 beta-prostaglandin F2 and prostaglandin D2 by boric acid-impregnated TLC and HPLC. By 5 min after the start of perfusion, 9 alpha,11 beta-prostaglandin F2 disappeared completely from the perfusate and the major product formed remained unchanged during the remainder of the 30-min perfusion. The major product was separated by TLC and identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 by GC/MS. In contrast, pulmonary breakdown of prostaglandin D2 was slow and two major metabolites in the perfusate increased with time, each representing 56% and 11% of the total radioactivity at the end of the perfusion. The major product (56%) was identified as 13,14-dihydro-15-ketoprostaglandin D2 and the minor one (11%) was tentatively identified as 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2 based on the results from radioimmunoassays, TLC, HPLC, and the time course of pulmonary breakdown. These results demonstrate that the metabolism of prostaglandin D2 in rat lung involves at least two pathways, one by 15-hydroxyprostaglandin dehydrogenase and the other by 11-ketoreductase, and that the 9 alpha,11 beta-prostaglandin F2 formed is rapidly metabolized to 13,14-dihydro-15-keto-9 alpha,11 beta-prostaglandin F2.[Abstract] [Full Text] [Related] [New Search]