These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Selection and Validation of Reference Genes for RT-qPCR Analysis in Aegilops tauschii (Coss.) under Different Abiotic Stresses. Author: Abbas A, Yu H, Li X, Cui H, Chen J, Huang P. Journal: Int J Mol Sci; 2021 Oct 13; 22(20):. PubMed ID: 34681677. Abstract: Aegilops tauschii (Coss.) is an aggressive and serious annual grass weed in China. Its DD genome is a rich source of genetic material and performs better under different abiotic stress conditions (salinity, drought, temperature, etc.). Reverse-transcribed quantitative polymerase chain reaction (RT-qPCR) is a reliable technique for reference gene selection and validation. This work aimed to evaluate the stability of reference gene expression in Ae. tauschii under different abiotic stresses (salinity, drought, hot, and cold) and developmental stages (seedling and development). The results show that the ubiquitin-conjugating enzyme E2 36-like (UBC36) and protein microrchidia 2-like (HSP) are the most stable genes under control and salinity conditions, respectively. Under drought stress conditions, UBC36 is more stable as compared with others. Glyceraldehyde-3-phosphate dehydrogenase (GADPH) is the most stable reference gene during heat stress conditions and thioredoxin-like protein (YLS) under cold stress condition. Phosphate2A serine/threonine-protein phosphatase 2A (PP2A) and eukaryotic translation initiation factor 3 (ETIF3) are the most stable genes at seedling and developmental stages. Intracellular transport protein (CAC) is recommended as the most stable gene under different abiotic stresses and at developmental stages. Furthermore, the relative expression levels of NHX1 and DREB under different levels of salinity and drought stress conditions varied with the most (HSP and UBC36) and least (YLS and ACT) stable genes. This study provides reliable reference genes for understanding the tolerance mechanisms in Ae. tauschii under different abiotic stress conditions.[Abstract] [Full Text] [Related] [New Search]