These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences.
    Author: Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC.
    Journal: Plants (Basel); 2021 Sep 29; 10(10):. PubMed ID: 34685863.
    Abstract:
    RNA-guided genomic transcriptional regulation tools, namely clustered regularly interspaced short palindromic repeats interference (CRISPRi) and CRISPR-mediated gene activation (CRISPRa), are a powerful technology for gene functional studies. Deriving from the CRISPR/Cas9 system, both systems consist of a catalytically dead Cas9 (dCas9), a transcriptional effector and a single guide RNA (sgRNA). This type of dCas9 is incapable to cleave DNA but retains its ability to specifically bind to DNA. The binding of the dCas9/sgRNA complex to a target gene results in transcriptional interference. The CRISPR/dCas9 system has been explored as a tool for transcriptional modulation and genome imaging. Despite its potential applications and benefits, the challenges and limitations faced by the CRISPR/dCas9 system include the off-target effects, protospacer adjacent motif (PAM) sequence requirements, efficient delivery methods and the CRISPR/dCas9-interfered crops being labeled as genetically modified organisms in several countries. This review highlights the progression of CRISPR/dCas9 technology as well as its applications and potential challenges in crop improvement.
    [Abstract] [Full Text] [Related] [New Search]