These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Endogenous Oxalate Production in Primary Hyperoxaluria Type 1 Patients.
    Author: Garrelfs SF, van Harskamp D, Peters-Sengers H, van den Akker CHP, Wanders RJA, Wijburg FA, van Goudoever JB, Groothoff JW, Schierbeek H, Oosterveld MJS.
    Journal: J Am Soc Nephrol; 2021 Dec 01; 32(12):3175-3186. PubMed ID: 34686543.
    Abstract:
    BACKGROUND: Primary hyperoxaluria type 1 (PH1) is an inborn error of glyoxylate metabolism, characterized by increased endogenous oxalate production. The metabolic pathways underlying oxalate synthesis have not been fully elucidated, and upcoming therapies require more reliable outcome parameters than the currently used plasma oxalate levels and urinary oxalate excretion rates. We therefore developed a stable isotope infusion protocol to assess endogenous oxalate synthesis rate and the contribution of glycolate to both oxalate and glycine synthesis in vivo . METHODS: Eight healthy volunteers and eight patients with PH1 (stratified by pyridoxine responsiveness) underwent a combined primed continuous infusion of intravenous [1- 13 C]glycolate, [U- 13 C 2 ]oxalate, and, in a subgroup, [D 5 ]glycine. Isotopic enrichment of 13 C-labeled oxalate and glycolate were measured using a new gas chromatography-tandem mass spectrometry (GC-MS/MS) method. Stable isotope dilution and incorporation calculations quantified rates of appearance and synthetic rates, respectively. RESULTS: Total daily oxalate rates of appearance (mean [SD]) were 2.71 (0.54), 1.46 (0.23), and 0.79 (0.15) mmol/d in patients who were pyridoxine unresponsive, patients who were pyridoxine responsive, and controls, respectively ( P =0.002). Mean (SD) contribution of glycolate to oxalate production was 47.3% (12.8) in patients and 1.3% (0.7) in controls. Using the incorporation of [1- 13 C]glycolate tracer in glycine revealed significant conversion of glycolate into glycine in pyridoxine responsive, but not in patients with PH1 who were pyridoxine unresponsive. CONCLUSIONS: This stable isotope infusion protocol could evaluate efficacy of new therapies, investigate pyridoxine responsiveness, and serve as a tool to further explore glyoxylate metabolism in humans.
    [Abstract] [Full Text] [Related] [New Search]