These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Protective Effect of Human Umbilical Cord Mesenchymal Stem Cells in Glucocorticoid-induced Osteonecrosis of Femoral Head.
    Author: Qiu C, Zhou JL, Deng S, Long LS, Peng H.
    Journal: Curr Med Sci; 2021 Oct; 41(5):909-915. PubMed ID: 34689292.
    Abstract:
    OBJECTIVE: To evaluate the effect of human umbilical cord mesenchymal stem cells (hUC-MSCs) on preventing rats from glucocorticoid-induced osteonecrosis of femoral head (GCONFH) in the early stage in vivo and to investigate the possible mechanism of hUC-MSCs in regulating the balance of osteogenesis and adipogenesis. METHODS: All rats were randomly divided into 3 groups: control group (C group), model group (M group), and intervention group (I group). The model of GC-ONFH was developed by a sequential administration of lipopolysaccharide and methylprednisolone. The rats in the I group were treated with caudal vein injection of hUC-MSCs. Six weeks later, the blood samples were obtained to measure the activity of alkaline phosphatase (ALP) and the content of triglyceride (TG) in serum, and the femoral heads were harvested and observed by hematoxylin-eosin staining, Micro-CT, Western blot and real-time quantitative polymerase chain reaction. RESULTS: After intervention of hUC-MSCs, the necrosis rate of femoral head decreased from 83% (10/12) to 33% (4/12), the rate of empty bone lacuna was significantly decreased, the activity of ALP increased significantly, the content of TG decreased significantly, the bone density increased obviously, the expression of RUNX2 and Col I increased significantly and the expression of PPARγ decreased significantly. CONCLUSION: These results revealed that caudal vein injection of hUC-MSCs can effectively reduce the incidence of GC-ONFH in rats by increasing ALP activity and reducing TG content in serum, increasing bone mineral density, promoting the expression of RUNX2 and Col I, and inhibiting the expression of PPARγ.
    [Abstract] [Full Text] [Related] [New Search]