These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Search MEDLINE/PubMed


  • Title: Nickel (II) chloride schiff base complex: Synthesis, characterization, toxicity, antibacterial and leishmanicidal activity.
    Author: Maia DO, Santos VF, Barbosa CRS, Fróes YN, Muniz DF, Santos ALE, Santos MHC, Silva RRS, Silva CGL, Souza ROS, Sousa JCS, Coutinho HDM, Teixeira CS.
    Journal: Chem Biol Interact; 2022 Jan 05; 351():109714. PubMed ID: 34710376.
    Abstract:
    The use of schiff base complex against microbial agentes a has recently received more attention as a strategy to combat infections caused by multidrug-resistant bacteria and leishmania. This study aimed to evaluate the toxicity, antibacterial and leishmanicidal activities of the nickel (II) chloride schiff base complex ([Ni(L2)] against Leishmania amazonensis promastigote, multi-resistant bacterial strains and evaluate to modulate antibiotic activity against multi-resistant bacterial. The schiff base complex was characterized by the techniques of elemental analysis, Fourier transform infrared spectroscopy (FTIR), UV-vis absorption spectroscopy and thermal analysis (TGA/DTG/DSC). The [Ni(L2)] complex presented moderate toxicity in saline artemia (LC50 = 150.8 μg/mL). In leishmanicidal assay, the NiL2 complex showed values of IC50 of (6.079 μg/mL ± 0.05656 at the 24 h), (0.854 μg/mL ± 0.02474, 48 h) and (1.076 μg/mL ± 0.04039, 72 h). In antibacterial assay, the [Ni(L2)] complex presented significant inhibited the bacterial growth of P. aeruginosa (MIC = 256 μg/mL). However, [Ni(L2)] complex did not present clinically relevant minimum inhibitory concentration (MIC ≥1024 μg/mL) against S. aureus and E. coli. The combination of [Ni(L2)] complex and antibacterial drugs resulted in the increased antibiotic activity of gentamicin and amikacin against S. aureus and E.coli multi-resistant strains. Thus, our results showed that [Ni(L2)] complex is a promising molecule for the development of new therapies associated with aminoglycoside antibiotics and in disease control related to resistant bacteria and leishmaniasis.
    [Abstract] [Full Text] [Related] [New Search]