These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Search MEDLINE/PubMed
Title: Simultaneous determination of penthiopyrad enantiomers and its metabolite in vegetables, fruits, and cereals using ultra-high performance liquid chromatography-tandem mass spectrometry. Author: Zhao T, Liu Y, Liang H, Li L, Shi K, Wang J, Zhu Y, Ma C. Journal: J Sep Sci; 2022 Jan; 45(2):441-455. PubMed ID: 34713971. Abstract: Penthiopyrad is a novel succinate dehydrogenase inhibitor that has one chiral center and exists a metabolite, 1-methyl-3-trifluoromethyl-1H-pyrazole-4-carboxamide in its residue definition. An efficient analytical method for the simultaneous determination of penthiopyrad enantiomers and its metabolite in eight matrices were developed using modified quick, easy, cheap, effective, rugged, safe method, coupled with chiral stationary phase and ultra-high performance liquid chromatography-tandem mass spectrometry. The absolute configuration of penthiopyrad enantiomers was confirmed by polarimetry and electronic circular dichroism. Eight polysaccharide-based chiral stationary phases were evaluated in terms of the enantioseparation of penthiopyrad and separation-related factors (the mobile phase, flow rate and the column temperature) were optimized. To obtain an optimal purification, different sorbent combinations were assessed. The linearities of this method were acceptable in the range of 0.005 to 1 mg/L with R2 > 0.998, while the limits of detection and quantification were 0.0015 mg/kg and 0.01 mg/kg for two enantiomers and its metabolite. The average recoveries of R-(-)-penthiopyrad, S-(+)-penthiopyrad and the metabolite ranged from 75.4 to 109.1, 69.5 to 112.8, and 70.0 to 108.5%, respectively. The intra-day and inter-day relative standard deviations were less than 18.8%. The analytical method was accurate and convenient, which can support their further research on stereoselective degradation, residual monitoring and risk assessment.[Abstract] [Full Text] [Related] [New Search]